RTK/Examples/ElektaReconstruction: Difference between revisions

From Openrtk
Jump to navigation Jump to search
No edit summary
 
(One intermediate revision by the same user not shown)
Line 9: Line 9:
The first step before one can proceed with the reconstruction is to convert Elekta's database information into RTK geometry file using a command line tool. This can be carried out following these steps:
The first step before one can proceed with the reconstruction is to convert Elekta's database information into RTK geometry file using a command line tool. This can be carried out following these steps:


1. Download Elekta dataset, [http://midas3.kitware.com/midas/download?items=28897 Elekta-data]
1. Download Elekta dataset, [https://data.kitware.com/api/v1/item/5be973478d777f2179a26e1c/download Elekta-data]


2. Run the application to convert Elekta's geometry into RTKs (DICOM_UID is contained in the subfolder name of the his files):
2. Run the application to convert Elekta's geometry into RTKs (DICOM_UID is contained in the subfolder name of the his files):
Line 25: Line 25:
     -o elektaGeometry
     -o elektaGeometry


An example of such a file is available in our test data, [http://midas3.kitware.com/midas/download/bitstream/454611/_Frames.xml here].
An example of such a file is available in our test data, [https://data.kitware.com/api/v1/item/5b179c898d777f15ebe201fd/download here].


3. Reconstruct elekta-data using RTK applications such as rtkfdk algorithm. In this case, we reconstruct just one axial slice (29.5) of the whole volume:  
3. Reconstruct elekta-data using RTK applications such as rtkfdk algorithm. In this case, we reconstruct just one axial slice (29.5) of the whole volume:  
Line 43: Line 43:


   rtkfieldofview \
   rtkfieldofview \
     --geometry geometry.xml \
     --geometry elektaGeometry \
     --path img_1.3.46.423632.135428.1351013645.166/ \
     --path img_1.3.46.423632.135428.1351013645.166/ \
     --regexp '.*.his' \
     --regexp '.*.his' \

Latest revision as of 11:03, 12 November 2018

Elekta Data

Elekta provides easy access to raw data. The data and projection images are stored in a single directory which is user configurable. The default location is D:\db. In this folder, there is a database in DBase format. Each table is contained in a .DBF file. RTK needs the IMAGE.DBF and FRAME.DBF tables.

Patient data are stored in invidual folders. By default, the name of each patient folder is patient_ID where ID is the patient ID. In these folders, one can access the planning CT in the CT_SET subfolder and the cone-beam projections in IMAGES/img_DICOM_UID subfolders where DICOM_UID is the DICOM UID of the acquisition. The projection images are .his files. The reconstructed images are the IMAGES/img_DICOM_UID/Reconstruction/*SCAN files.

Elekta Reconstruction

The first step before one can proceed with the reconstruction is to convert Elekta's database information into RTK geometry file using a command line tool. This can be carried out following these steps:

1. Download Elekta dataset, Elekta-data

2. Run the application to convert Elekta's geometry into RTKs (DICOM_UID is contained in the subfolder name of the his files):

 rtkelektasynergygeometry \
   --image_db IMAGE.DBF \
   --frame_db FRAME.DBF \
   --dicom_uid 1.3.46.423632.135428.1351013645.166 \
   -o elektaGeometry

Note that since XVI v5, the geometry is contained in a separate _Frames.xml file which can be used with

 rtkelektasynergygeometry \
   --xml _Frames.xml \
   -o elektaGeometry

An example of such a file is available in our test data, here.

3. Reconstruct elekta-data using RTK applications such as rtkfdk algorithm. In this case, we reconstruct just one axial slice (29.5) of the whole volume:

 rtkfdk \
   --lowmem \
   --geometry elektaGeometry \
   --path img_1.3.46.423632.135428.1351013645.166/ \
   --regexp '.*.his' \
   --output slice29.5.mha \
   --verbose \
   --spacing 0.25,0.25,0.25 \
   --dimension 1024,1,1024 \
   --origin -127.875,29.5,-127.875

4. Apply the FOV (field of view) filter, in order to mask out everything that is outside the FOV:

 rtkfieldofview \
   --geometry elektaGeometry \
   --path img_1.3.46.423632.135428.1351013645.166/ \
   --regexp '.*.his' \
   --reconstruction slice29.5.mha \
   --output slice29.5.mha \
   --verbose

5. Finally, you can visualize the result (e.g. with VV) and it should look like the image below:

Error creating thumbnail: File missing